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ABSTRACT
A fundamental tenet of MOdified Newtonian Dynamics (MOND) is the Mass Discrep-
ancy Acceleration Relation (MDAR) - a direct link between the acceleration observed
and that predicted from Newton’s laws with a significant disparity only when the
acceleration is lower than a MOND acceleration constant, g†. Recent observations
suggest MDAR indeed holds - at least statistically - on galaxy scales. Here, I con-
sider the implications for dark matter assuming its distribution is such that MDAR is
strictly reproduced. I examined the best power law approximation to the dark matter

density profile, d ln ρDM
d ln r , across various prescriptions for MOND interpolating function

and baryonic mass distribution; there were very few cases in which the results agreed
with those from ΛCDM simulations. Hence, I see a distinguishing feature between
MOND and ΛCDM. While MDAR must hold strictly in MOND, it can only ever hold
qualitatively in ΛCDM.

Key words: dark matter – acceleration of particles – galaxies: kinematics and dy-
namics

1 INTRODUCTION

One of the biggest conundrums of our generation is the na-
ture of “dark-sector” physics. Like many enduring debates
in the history of science, it has polarised opinion while elud-
ing solution. Dark matter is fascinating in particular; de-
spite almost 40 years of work, we have yet to detect any
dark matter nor truly discredit its rival, MOdified Newto-
nian Dynamics (MOND). The flame has most recently been
rekindled by McGaugh, Lelli & Schombert (2016) - here-
after MLS16. They showed the radial acceleration due to
a galaxy’s1 baryons2, gbar, is strongly correlated with the
radial acceleration observed, gobs, by

gobs =
gbar

1 − e−
√
gbar/g†

(1)

where g† = 1.2×10−10 m/s2. As Mordehai Milgrom - MOND’s
inventor - was quick to point out (Milgrom 2016), equation
(1) is an example of the Mass Discrepancy Acceleration Re-
lation (MDAR) - a fundamental MOND prediction whose
form has been updated regularly (see Sanders 1990; Gen-
tile, Famaey & de Blok 2011, for some previous iterations).

? E-mail: rvirinchi@gmail.com
1 Throughout this paper, when I say “galaxy,” I’m really only
referring to rotationally supported galaxies.
2 For consistency with the field’s literature, I take “baryons” to
mean all normal matter, even though electrons and the like are

not baryons.

MDAR is an incredibly powerful statement. One can fully
determine a galaxy’s dynamics from its visible matter alone;
no assumptions about dark matter’s existence or form are
necessary.

However, it’s still useful at times to adopt a dark matter
point of view because whether you believe in dark matter or
not, a missing mass component - the mass discrepancy - can
always be added to explain the visible dynamics. Dark mat-
ter is analogous to a pseudo-force when applying Newton’s
laws in non-inertial reference frames. The force isn’t really
there, but it’s often an efficient way to predict the equations
of motion. Since

gobs = gbar + gDM ⇐⇒ gDM = gobs − gbar (2)

equation (1) can be re-written as

gDM =
gbar

e
√
gbar/g† − 1

(3)

MLS16 only made passing reference to this formulation of
MDAR, but it’s quite profound in its own right because gDM
is enough to calculate ρDM, the volume mass density distri-
bution of dark matter; I’ll leave the calculation’s details to
the equation overload of section 2. Therefore, regardless of
whether dark matter exists, one can deduce the theoretical
distribution required to reproduce the observed dynamics
given Newtonian gravity.

Across sections 2 and 3, I deduce ρDM for various pre-
scriptions of ρbar and MOND interpolating functions con-
sistent with MLS16’s data. In all cases, the ρDM profile is
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2 V. V. Rallabhandi

inconsistent with the ever popular isothermal sphere, cored
isothermal sphere, NFW (Navarro, Frenk & White 1997),
Burkert (Burkert 1995) or more recent DC14 (Di Cintio et.
al 2014) profiles. Di Cintio et. al’s profile is especially no-
table for it tries to account for baryons’ effect on ρDM - an
aspect regularly ignored by works of previous generations.

In summary, the ρDM profiles required to strictly re-
produce MDAR are unlike those required by dark matter
simulations. The discord is especially important in light of
global efforts to reproduce MLS16’s result under the ΛCDM
paradigm (see Navarro et al. 2017; Ludlow et al. 2017; Keller
& Wadsley 2017, for some examples). My result shows it is
impossible for such simulations to reproduce MDAR exactly
while remaining consistent with earlier work; the best they
can do is approximate it across a galaxy. Therefore, we have
a fundamental disparity between MOND and ΛCDM. While
MDAR is followed strictly throughout a galaxy in MOND,
it cannot be in ΛCDM. Indeed, it need not be for ΛCDM
to be true. MLS16’s presentation of the data doesn’t help
discriminate between the two paradigms. They only present
beautifully averaged, binned data. Instead, with measure-
ments revealing how strictly MDAR is followed within each
galaxy, we may finally be able to settle the enduring feud
between MOND and dark matter.

Before I dive into details, I’d like to acknowledge this
paper does not present entirely new ideas. Rather, it is an
offshoot of work I began in Rallabhandi & Meurer (2019) -
hereafter RM19. For clarity and completeness I will repeat
some of the material in section 6 of that work. Overall, I
believe I’m presenting a more refined, focused and holistic
approach here.

2 MATHEMATICAL MACHINERY

2.1 Deriving the dark matter distribution

I want to determine the implied dark matter distribution
under the assumption MDAR holds strictly. I’m going to
assume the only significant force at play in the galaxy is
gravity and the dark matter interacts gravitationally with
all massive objects (including itself). For those who do not
wish to re-live the torture inflicted upon them by school
teachers trying to imprint the chain, product and quotient
rules on their minds, the salient results are equations (18),
(24), (27) and (28) along with the general discussions in
sections 2.2 and 2.3.

∴ gobs = gbar f (gbar/g†) (4)

where g† is the MOND acceleration constant and f is an
arbitrary MOND interpolating function, i.e. f (x) ≈ 1 for
x � 1 and f (x) ≈ 1√

x
for x � 1.

∴ gDM = gobs − gbar (5)

= gbar( f (gbar/g†) − 1) (6)

I’m focussing solely on the case where ρDM is spherically
symmetric. Hence, gDM and ΦDM, the gravitational potential
due to the dark matter alone, are also spherically symmetric.

∴ gDM =
dΦDM

dr
(7)

Strictly speaking, gDM = − dΦDM
dr , but that expression uses

gDM < 0 for rotationally supported systems. However, if we

relabel gDM > 0, i.e. take the radial acceleration to be pos-
itive in the −r direction, then we get equation (7). Hence,
we can bypass the annoying clutter and confusion of minus
signs in the subsequent discussion. For Newtonian gravity,
we can apply Poisson’s equation,

4πGρDM = ∇2
ΦDM (8)

=
1
r

d2

dr2

(
rΦDM

)
(9)

=
1
r

d
dr

(
d
dr

(
rΦDM

))
(10)

=
1
r

d
dr

(
ΦDM + r

dΦDM
dr

)
(11)

=
1
r

d
dr

(
ΦDM + rgDM

)
(12)

=
1
r

(
gDM + gDM + r

dgDM
dr

)
(13)

=
2gDM

r
+

dgDM
dr

(14)

Then, using equation (6),

4πGρDM =
2gbar( f (

gbar
g†
) − 1)

r
+

d
dr

(
gbar

(
f
( gbar
g†

)
− 1

))
(15)

=
2gbar( f (

gbar
g†
) − 1)

r
+

d
dgbar

(
gbar

(
f
( gbar
g†

)
− 1

)) dgbar
dr
(16)

=
2gbar( f (

gbar
g†
) − 1)

r

+

(
f
( gbar
g†

)
− 1 +

gbar
g†

f ′
( gbar
g†

)) dgbar
dr

(17)

∴ ρDM =
gbar( f (

gbar
g†
) − 1)

2πGr

+
1

4πG

(
f
( gbar
g†

)
− 1 +

gbar
g†

f ′
( gbar
g†

)) dgbar
dr

(18)

As an exemplar of the utility of equation (18), I begin by
presenting the “deep MOND” limit, f (gbar/g†) =

√
g†/gbar.

ρDM =
gbar

(√
g†
gbar
− 1

)
2πGr

+
1

4πG

(√
g†
gbar
− 1 +

gbar
g†

(
−

g†
√
g†

2gbar
√
gbar

))
dgbar

dr
(19)

=

√
gbarg† − gbar

2πGr
+

1
4πG

(√
g†
gbar
− 1 − 1

2

√
g†
gbar

)
dgbar

dr
(20)

=

√
gbarg† − gbar

2πGr
+

1
4πG

(
1
2

√
g†
gbar
− 1

)
dgbar

dr
(21)

This far out in a galaxy, the baryonic mass distribution is
very close to Keplerian, gbar =

GM
r2 where M = total baryonic
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mass. Then,
dgbar

dr = −
2GM
r3 and we get

ρDM =

√
GM
r2 g† − gbar

2πGr
+

1
4πG

(
1
2

√
g†r2

GM
− 1

) (
− 2GM

r3

)
(22)

=
1

2πr2

√
Mg†

G
− M

2πr3 −
1

4πr2

√
Mg†

G
+

M
2πr3 (23)

=
1

4πr2

√
Mg†

G
(24)

I’m pleasantly surprised something as foreboding as equa-
tion (18) has such a simple limit. Furthermore, we imme-
diately know that if dark matter exists and forms NFW or
Burkert profiles then MDAR connot hold indefinitely. I’ve
just shown that if MDAR holds strictly, then ρDM ∝ 1

r2 , not

the 1
r3 required by the aforementioned duo.
While power laws shouldn’t be deployed unnecessarily,

the “deep MOND” example illustrates the utility of consid-
ering ρDM’s power law behaviour across a galaxy. Indeed we
often speak of NFW as having a 1

r behaviour in the centre,
1
r3 in the outskirts and so on. The degree to which a dark
matter halo is “cored” or “cuspy” can also be quantified by
the best power law approximation, ρDM ∝ rα, in a galaxy’s
centre. To explore α(r), how the best power law approxima-
tion evolves through a galaxy, I suggest using

α =
d ln ρDM

d ln r
(25)

=
d ln ρDM

dρDM

dr
d ln r

dρDM
dr

(26)

=
r

ρDM

dρDM
dr

(27)

For
dρDM

dr , differentiating equation (18) gives

dρDM
dr

=
1

2πGr2

[
r
{

f
( gbar
g†

)
− 1 +

gbar
g†

f ′
( gbar
g†

)} dgbar
dr

− gbar

(
f
( gbar
g†

)
− 1

)]
+

1
4πGg†

(
2 f ′

( gbar
g†

)
+
gbar
g†

f ′′
( gbar
g†

)) ( dgbar
dr

)2

+
1

4πG

(
f
( gbar
g†

)
− 1 +

gbar
g†

f ′
( gbar
g†

)) d2gbar
dr2 (28)

To apply equation (27), via equations (18) and (28),
throughout a galaxy, I must assume some models for gbar
and f (x). I intend to explore a few choices for each. Fur-
thermore, while I suggested NFW or Burkert profiles were
inconsistent with a strictly MDAR-following Universe using
equation (24), we shouldn’t turn off the life support yet. The
“deep MOND” limit may only be a good approximation for
r � the virial radius, where the concept of “a galaxy’s” dark
matter halo makes little sense.

2.2 Baryonic mass distribution

My strategy is to explore popular models for ρbar. Given

ρbar, I must deduce gbar,
dgbar

dr and
d2gbar

dr2 to apply equations

(27) and (28).

A favourite in the field for the baryonic mass distribu-
tion is an infinitely thin, exponential disk (Freeman 1970),

Σ∗(r) = Σ0e−r/r0 (29)

where Σ∗(r) is the surface mass density at radius, r, Σ0 is
the central surface mass density and r0 is the scale length.
In that case, Freeman (1970) finds

gbar =
πGΣ0r

r0

(
I0(s)K0(s) − I1(s)K1(s)

)
(30)

where s = r
2r0

and I and K are the modified Bessel functions
of the first and second kind. Then, using

dI0(s)
ds

= I1(s) (31)

dK0(s)
ds

= −K1(s) (32)

dIn(s)
ds

=
1
2
(In−1(s) + In+1(s)) (33)

dKn(s)
ds

= −1
2
(Kn−1(s) + Kn+1(s)) (34)

ds
dr
=

1
2r0

(35)

where n ≥ 1, we get

dgbar
dr
=

gbar
r
+
πGΣ0r

2r2
0

(
I1(s)K0(s) − I0(s)K1(s)

− 1
2

K1(s)
(
I0(s) + I2(s)

)
+

1
2

I1(s)
(
K0(s) + K2(s)

))
(36)

Then, a true monstrosity is

d2gbar
dr2 = −gbar

r2 +
1
r

dgbar
dr
+
πGΣ0
2r2

0

(
I1(s)K0(s) − I0(s)K1(s)

− 1
2

K1(s)
(
I0(s) + I2(s)

)
+

1
2

I1(s)
(
K0(s) + K2(s)

))
+
πGΣ0r

4r3
0

[
1
2

(
I0(s) + I2(s)

)
K0(s) − 2I1(s)K1(s)

+
1
2

(
K0(s) + K2(s)

)
I0(s)

+
1
2

(
K0(s) + K2(s)

) (
I0(s) + I2(s)

)
− 1

2
K1(s)

(
I1(s) +

1
2
(
I1(s) + I3(s)

) )
− 1

2
I1(s)

(
K1(s) +

1
2
(
K1(s) + K3(s)

) )]
(37)

While an ugly expression, I present it for completeness, so
that others do not have to spend an eternity carrying out the
calculation themselves and so my work may checked more
easily.

Generally, the lone exponential disk is popular to de-
scribe the stellar mass distribution, but not the gaseous con-
tent (van der Kruit & Freeman 2011). While gas is thought
to have a negligible impact for high and intermediate mass
galaxies, one must be more careful for low mass cases. Here,
I’ll be applying the “stable disk model” (see Meurer, Zheng
& de Blok 2013; Zheng et al. 2013; Wong et al. 2016, and
RM19 for some implementations and motivation) developed
in RM19 - itself an extension to the model by Wong et al.
(2016).
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The model assumes the Toomre stability parameter
(Toomre 1964),

Q =
σκ

πGΣ
(38)

is constant throughout the galaxy. In equation (38), σ is
the disk’s particles’ velocity dispersion, Σ is its surface mass
density and κ is the epicycle frequency defined as

κ(r) = V(r)
r

√
2
(
1 +

r
V(r)

dV(r)
dr

)
(39)

where V(r) is the rotation speed at a radius, r. Equation
(38) can be extended to account for a galaxy made from
stellar and gaseous disks - the preferred approach in practice.
RM19’s stable disk model is also an advancement on thin
exponential disk as it accounts for the three dimensional
distribution of stars and gas - something I found to have
non-trivial consequence when developing the model’s code.

I am not aware of any analytic methods to determine
gbar or its derivatives for the stable disk model. Therefore,
I’ll calculate gbar using the numerical integration described
in RM19 - particularly making use of equation 64 in that

work.
dgbar

dr and
d2gbar

dr2 cannot be simply evaluated by
dy
dx ≈

δy
δx

because there would be too many small scale fluctuations
skewing the result. Instead, I interpolated gbar using a quin-
tic spline and used its derivatives. By blind experimenta-
tion, I found choosing every 35th data point as a knot, cor-
responding to intervals of 7

10 r0, gave the smoothest spline
derivatives. Unfortunately, I couldn’t remove all unwanted
oscillations - indeed, with only a fifth order spline, Runge’s
phenomenon makes the task impossible. Hence, I’m only go-
ing to consider the inner 75% of the radial range, where the
results are more reliable3. This is not actually as bad a prob-
lem as it sounds. RM19’s stable disk implementation relies
on extending the disk beyond the truncation radius, Rmax,
so the disk doesn’t end abruptly and gbar 6→ ∞ as r → Rmax.
Furthermore, extending the disk is physically sensible; it
doesn’t make sense for disks to abruptly and totally end
at a radius, Rmax, when ρbar(r) 6→ 0 as r → Rmax. Removing
the outer 25% of the radial range usually only removes this
disk extension.

It would be remiss of me not to mention there are other
models for the gaseous distribution. For example, Karukes &
Salucci (2016) had moderate success modelling the rotation
curves of dwarf disk galaxies using Tonini et al. (2006)’s
model where the gas forms an exponential disk with thrice
the scale length of the stellar disk. I didn’t implement their
model because there would be too many free parameters to
vary. Overall, there isn’t a consensus in the literature on how
to model gas.

Both the exponential and stable disks ignore the bulge,
which is thought to follow a Sersic profile. While I devel-
oped some code to model a Sersic component4 to a galaxy,

3 The complete code used in RM19 and the present paper is avail-

able at https://github.com/VirinchiRallabhandi/GalaxyModels.

In particular, the implementation I’m applying here is “Galaxy-
Model14.java” for the majority of the calculations and ”dark mat-

ter slopes.py” for the graphs and interpolation
4 Available at the same location provided in the footnote directly

above

I’m not going to include that here. Primarily it’s so that I
don’t complicate the issue - the number of combinations of
interpolating function and baryonic mass distribution grows
very quickly. However, it’s also worth noting only a fifth
of MLS16’s sample galaxies had a bulge. Hence their ob-
servation of MDAR stands primarily on observing bulgeless
galaxies.

As an aside, it’s worth pointing out no matter what
baryonic mass distribution I choose, it will automatically
follow the Baryonic Tully Fischer Relation (BTFR). The
BTFR follows directly from MDAR; the following argument
shows it need not be added in “by hand.”

As r → ∞, we can simply use the deep-MOND dark
matter density limit, equation (24), to model the complete
dark matter distribution. Hence,

MDM(r) =
∫ r

0
4πr2ρDM dr (40)

=

∫ r

0
4πr2

(
1

4πr2

√
Mbarg†

G

)
dr (41)

= r

√
Mbarg†

G
(42)

As explained earlier, this far out in a galaxy, the baryonic
mass distribution is essentially a point mass, Mbar, and since
the ρDM is spherically symmetric, the only gravitational
forces relevant at a radius, r, are those at a lower radius.
Thus,

lim
r→∞

V(r) = lim
r→∞

√
GMtotal

r
(43)

= lim
r→∞

√
G
r

(
Mbar + r

√
Mbarg†

G

)
(44)

= lim
r→∞

√
GMbar

r
+

√
GMbarg† (45)

= (GMbarg†)1/4 (46)

Then, taking limr→∞ V(r) = Vf , the rotation velocity on the
flat part of the rotation curve,

Mbar =
1

Gg†
V4
f (47)

which is indeed the archetypal BTFR, Mbar ∝ V4
f
, with

MOND predicting a proportionality constant, 1
Gg†

.

2.3 MOND interpolating functions

While the equations thus far apply for arbitrary interpolat-
ing functions, f , I have to choose a specific functional form
for calculations. For each f , I require f ′ and f ′′ to use equa-
tion (28). The most natural choice is

f1(x) =
1

1 − e−
√
x

(48)

because MLS16 chose it as the function they believed best
fit their data. However, Milgrom (2016) showed

f2(x) =
1 +

√
1 + 4

x

2
(49)
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and

f3(x) = tanh−a(x1/2a) (50)

also fit the data very well; for f3 Milgrom (2016) suggests
a = 1.75. For the 1st and 2nd derivatives, we get

f ′1 (x) = −
(−e−

√
x)(− 1

2
√
x
)

(1 − e−
√
x)2

(51)

= − e−
√
x

2
√

x(1 − e−
√
x)2

(52)

∴ f ′′1 (x) = −
1

2x(1 − e−
√
x)4

{
− 1

2
√

x
e−
√
x(
√

x(1 − e−
√
x)2)

− e−
√
x

(
1

2
√

x
(1 − e−

√
x)2 + 2

√
x(1 − e−

√
x)( 1

2
√

x
e
√
x)

)}
(53)

=
1

4x(1 − e−
√
x)4

{
e−
√
x(1 − e−

√
x)2

+ e−
√
x

(
1
√

x
(1 − e−

√
x)2 + 2(1 − e−

√
x)e−

√
x

)}
(54)

=

e−
√
x(1 − e−

√
x) + e−

√
x
(

1√
x
(1 − e−

√
x) + 2e−

√
x
)

4x(1 − e−
√
x)3

(55)

=

e−
√
x(1 − e−

√
x)

(
1 + 1√

x

)
+ 2e−2

√
x

4x(1 − e−
√
x)3

(56)

for f1,

f ′2 (x) =
−4/x2

4
√

1 + 4
x

(57)

= − 1

x2
√

1 + 4
x

(58)

∴ f ′′2 (x) =
2x

√
1 + 4

x + x2
(

1
2
√

1+4/x

(
− 4

x2

))
x4

(
1 + 4

x

) (59)

=

2x
√

1 + 4
x −

2√
1+4/x

x4
(
1 + 4

x

) (60)

=
2x

(
1 + 4

x

)
− 2

x4
(
1 + 4

x

)3/2 (61)

=
2(x + 3)

x4
(
1 + 4

x

)3/2 (62)

for f2 and

f ′3 (x) = (−a tanh−(a+1)(x1/2a))(sech2(x1/2a))
(

x1/2a−1

2a

)
(63)

= −1
2

x1/2a−1 tanh−(a+1)(x1/2a) sech2(x1/2a) (64)

∴ f ′′3 (x) =
( 1

2
− 1

4a

)
x1/2a−2 tanh−(a+1)(x1/2a) sech2(x1/2a)

+
a + 1

4a
x1/a−2 tanh−(a+2)(x1/2a) sech4(x1/2a)

+
1

2a
x1/a−2 tanh−a(x1/2a) sech2(x1/2a) (65)

for f3. Intuitively, I don’t expect the behaviour of these
three functions to give radically different results because
they are all very similar across the acceleration range stud-
ied by MLS16. However, I’m still going to test them all for
completeness.

3 RESULTS

After all that maths, there isn’t really much left to do.
My plan is to try many different realistic calibrations for
the baryonic mass distribution with each MOND interpo-

lating function. For each, I’ll calculate
d ln ρDM

d ln r - to compare
it against what’s expected for popular dark matter halo pro-
files like NFW. Because of equation (24), I already know my
calculated value will be −2 in the limit. However, if that limit
is at radii on the order of the virial radius, then the limit is
rather useless because a galaxy is unlikely to be rotationally
supported that far out. Throughout this section, I’m taking
g† = 1.2 × 10−10, the same value as MLS16, and a = 1.75 for
f3, the value suggested by Milgrom (2016).

First up, the exponential disk, Σ∗ = Σ0e−r/r0 . I need to
choose realistic values for Σ0 and r0. Choosing Σ0 is the same
as choosing the stellar mass given r0 because

M∗ =
∫ ∞

0
2πrΣ0e−r/r0 dr (66)

= 2πΣ0r2
0 (67)

∴ Σ0 =
M∗

2πr2
0

(68)

In RM19, we showed one could find a scaling between r0 and
M∗ with some intermediate parameters. However, all these
scaling relations have non-negligible scatter. Therefore, as in
section 6 of RM19, I’m not going to impose a strict relation
between r0 and M∗. Rather, I’ll try a range of combinations
for each. Through the literature review in RM19, we found
the range of galaxy masses and r0 is at most between 1039 −
1042 kg and 1019 − 2 × 1020 m respectively. Taking 25 model
galaxies across this range as representatives, I get figures 1
– 3 by going through the interpolating functions. Contrary
to my expectations, changing the interpolating function has
quite an appreciable impact. f2 tends to have a greater global
minimum than the rest and f3 tends to rise most slowly from

the global minimum. As an by-product,
d ln ρDM

d ln r occasionally
doesn’t get close to it’s −2 asymptote even at r = 20r0, where
I’ve cut-off the graphs.

All the popular dark matter halo profiles I namechecked
earlier - NFW, Burkert, isothermal sphere, cored isothermal

sphere and DC14 - have monotonically decreasing
d ln ρDM

d ln r

MNRAS 000, 1–11 (2019)
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Slope of log(dark matter density) as per MDAR

Figure 1. Cell (i, j) - indexing with (0, 0) in the top left, i being the row index and j being the column index - gives
d ln ρDM

d ln r as a function

of r - in units of r0 - for a galaxy with r0 = 1019 × 20i/4 m and M∗ = 1039 × 1000 j/4 kg using f1 as the interpolating function.
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Figure 2. Cell (i, j) - indexing with (0, 0) in the top left, i being the row index and j being the column index - gives
d ln ρDM

d ln r as a function

of r - in units of r0 - for a galaxy with r0 = 1019 × 20i/4 m and M∗ = 1039 × 1000 j/4 kg using f2 as the interpolating function.
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Slope of log(dark matter density) as per MDAR

Figure 3. Cell (i, j) - indexing with (0, 0) in the top left, i being the row index and j being the column index - gives
d ln ρDM

d ln r as a function

of r - in units of r0 - for a galaxy with r0 = 1019 × 20i/4 m and M∗ = 1039 × 1000 j/4 kg using f3 as the interpolating function.
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profiles. Only very few of my model galaxies - a representa-
tive sample of the various possible combinations of r0 and
Σ0 in real galaxies - actually have monotonically decreas-

ing
d ln ρDM

d ln r . The ones that do are very high mass, low scale
length galaxies - an unlikely combination (Wong et al. 2016)
- with interpolating function, f2. Using f1, again there are a
few problems with very high mass, low scale length galaxies.

However, overall, it’s clear the
d ln ρDM

d ln r profiles start between
−1 and −0.5 - a cusp rather than a core - and then dip down
to about −2.5 at r ≈ 5r0 and rise back up to −2 at r ≈ 10r0.
However, I don’t know if such a dip and rise can be detected
within the baryonic extent of galactic disks. For example,
Meurer et al. (2018) found Rmax = (4.7 ± 0.8)r0 where Rmax
is the disk’s truncation radius. 4.7r0 is too small to distin-
guish my profiles in figures 1 – 3 from NFW, Burkert, etc.
Yet, Ianjamasimanana et al. (2015) were plotting HI velocity
dispersion all the way out to about 15 scale lengths in some
galaxies; that’s more than enough to observe the dip and

rise in
d ln ρDM

d ln r in figures 1 – 3. I’ll leave it to the observers
to squabble over the discrepancy.

Figures 1 – 3 give a broad description of the implied
dark matter density profiles. However, I’ve ignored all possi-
ble calibration between M∗ and r0 in producing these figures.

We see non-trivial variations in
d ln ρDM

d ln r across each figure. To

better understand these variations, I want to explore
d ln ρDM

d ln r
within model galaxies which abide by observed scaling re-
lations - a task for which RM19’s stable disk model is well
suited.

RM19’s stable disk model is built upon one independent
variable, Vfinal, the rotation speed at the disk’s edge. From
there, the rotation curve is deduced by the Universal Rota-
tion Curve (URC) (Persic & Salucci 1991; Persic, Salucci &
Stel 1996) and the stellar and gaseous mass distributions by
various scaling relations and the constant Q property. The
dark matter distribution was assumed to be a free parame-
ter which adjusts so that the URC is reproduced given the
deduced baryonic mass distribution. However, that doesn’t
guarantee strict adherence to MDAR. The rotation curve is
intrinsically linked to MDAR because

V(r)2
r
= gobs = gbar f (gbar/g†) (69)

Hence, V(r) is calculated from gbar when one assumes MDAR
holds strictly. But I need to know V(r) to apply the stable
disk model because the epicycle frequency is a function of
V(r).

The only solution I see is to iteratively improve V(r), ρ∗
and ρg - the rotation curve and stellar & gaseous volume
mass density - so that we get both constant Q and strict
MDAR. Using my favourite problem solving strategy, guess
and check, I found five iterations suffices for V(r), ρ∗ and ρg

to converge close to an equilibrium. The resulting
d ln ρDM

d ln r
profiles are shown in figure 4. As explained earlier, I’ve only
graphed the inner 75% of the radial range. The scale lengths
referenced in the figure are the initial (before iteration) r0
values for the exponential stellar disk embedded within the
disk. The profiles are somewhat different to the pure expo-
nential disks. The profiles are still rarely monotonic, but I
believe that might only be because Runge’s phenomenon is
affecting the results. Such concerns may be alleviated by us-
ing far greater computing power in evaluating gbar. I would

have liked to apply the stable disk model for Vfinal < 125
km/s5, but alas, the iteration between initially assumed ro-
tation curve and strict MDAR rotation curve doesn’t con-
verge. In fact, it’s very difficult to rigorously prove conver-
gence in any case. For example, the harmonic series’ partial
sums don’t intuitively look like they diverge, but they do
anyway.

However, one may still glean useful information form

figure 4. Like the thin exponential disk case,
d ln ρDM

d ln r dips
much further below −2 when using f3 compared to f1 or f2.

In fact,when applying f1 and f2,
d ln ρDM

d ln r doesn’t always dip
below −2. This is a marked difference to the thin exponential
disk case and illustrates that gas is a non-trivial player in
rotation curve and dark matter studies. In the cases where
d ln ρDM

d ln r dips below −2, it doesn’t often make it back up to
−2 within the radial range plotted. Yet, from equation (24),
we know all the subplots must asymptote to −2. Therefore,
adding gas - much more influential in galaxies’ outer parts -

has pushed the global minimum in
d ln ρDM

d ln r further out com-
pared to the thin exponential disks considered earlier. In all

18 cases, −1 / d ln ρDM
d ln r |r=0 / −0.5, quite a cuspy centre6.

None of the established dark matter density profiles can re-
produce the profiles in figure 4, but in some cases they are
qualitatively alike. DC14 seems the best to me - perhaps an
unsurprising result as it’s the only one taking into account
baryonic processes such as the gas distribution so central to
distinguishing figure 4 from figures 1 – 3.

4 CONCLUSION

Inspired by MLS16’s result, I set out to explore what it takes
to strictly reproduce MDAR - the quintessential MOND law
- within the dark matter paradigm. I’ve assumed dark mat-
ter is massive, interacts solely gravitationally with all other
massive particles, moves at non-relativistic speeds and is dis-
tributed in a spherically symmetric manner. Given a bary-
onic mass distribution and the assumption MDAR holds
strictly, I was able determine various properties of the dark
matter using Poisson’s law. These included its volume mass
density as a function of radius, equation (18), its distribution
as r →∞, equation (24), and the exponent of its best power

law approximation, equation (27) for
d ln ρDM

d ln r . A further con-
sequence of assuming strict MDAR is the BTFR, equation
(47), must hold. All of these results apply generally.

However, to make them concrete, I tried various com-
monly applied prescriptions for MOND interpolating func-
tion consistent with MLS16’s result and baryonic mass dis-
tribution. I found there are significant differences between all
the cases. I found the r →∞ limit was inconsistent with most
established dark matter density profiles, except the cored
and normal isothermal spheres. However, getting close to
the limit is difficult within galaxies’ observable radial range.

5 By this I mean Vfinal was originally set to 125 km/s; the iteration

process will usually change Vfinal and other parameters, such as
r0.
6 It’s not actually possible to find

d ln ρDM
d ln r directly from equation

(27) because of dividing by zero issues in equation (28). I’m taking
d ln ρDM

d ln r |r=0 as
d ln ρDM

d ln r at the innermost r value it’s calculated -

namely r = 0.02r0.
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Slope of log(dark matter density) as per MDAR

Figure 4. Cell (i, j) - indexing with (0, 0) in the top left, i being the row index and j being the column index - gives the
d ln ρDM

d ln r profile

for the stable disk model initialised with Vf inal = (125 + 25i) km/s and using interpolating function, fj+1.
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Instead, to better assess how well the strict MDAR dark
matter profiles correlated with the established profiles from

simulations, I decided to track
d ln ρDM

d ln r through a galaxy. I

found
d ln ρDM

d ln r is rarely monotonically decreasing as in the
expected profiles from ΛCDM simulations. The disparity is
greatest when considering a thin exponential disk and in-
terpolating function, f3, but somewhat smaller for the other
two interpolating functions tried and the stable disk model
- a well calibrated method to derive the 3D distribution of
stars and gas within a galaxy.

My hope is analysis such as these will contribute to
disproving either the MOND or dark matter paradigms. In
MOND, MDAR must hold strictly. If MDAR holds strictly
as MLS16 suggest, then there are major problems for ΛCDM
because dark matter profiles predicted by simulations dis-
agree with the ones I’ve shown are required for strict MDAR.
As I mentioned earlier, MDAR has qualitatively been repro-
duced by many scientists (Navarro et al. 2017; Ludlow et
al. 2017; Keller & Wadsley 2017, are the examples I cited
earlier) under ΛCDM. Therefore, to truly settle the debate,
MLS16 need to be more forthright about how strictly MDAR
holds within each galaxy7. If MDAR holds strictly, ΛCDM is
reeling; if MDAR doesn’t hold strictly, then the central tenet
of MOND is disproven. The issue of MDAR holding strictly
is further complicated because there are many different in-
terpolating functions to check. I’ve shown that although
many disparate functions are consistent with MLS16’s data,
they have significantly different implications for dynamics
within a galaxy.

While it’s very easy to fall deep into this bottomless
well of debate between MOND and dark matter, one should
remember it’s possible ΛCDM and MOND are both bark-
ing up the wrong tree. For example, we’ve now seen galax-
ies with surprisingly little dark matter (van Dokkum et al.
2018, 2019). If the results are correct - as they seem to be -
then the strict MDAR mass modelling presented here is for
nought. Similarly, ΛCDM supporters would have to rethink
the theory of galaxies forming within dark matter halos.

It is of course surprises such as these which keep us in
the field. I don’t claim to have settled the debate between
MOND and ΛCDM. But I do claim to present a result re-
garding some specific subtleties at the boundary between
the two theories. As with all great mysteries, the resolution
is elusive and each question on the path seems to throw up
more follow-up questions than answers.
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